Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nevzat Karadayı, ${ }^{\text {a }}$ S Samil Issık, ${ }^{\text {a }}$
 Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Musa Özil ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nevzatk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.179$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Benzyloxyphenoxy)phthalonitrile

The title compound, $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2}$, consists of two substituted benzene rings and one phthalonitrile moiety. The dihedral angle between the first two benzene rings is 62.91 (1) ${ }^{\circ}$, and that between the phthalonitrile and the central benzene ring is 70.82 (1) ${ }^{\circ}$.

Comment

Monosubstituted phthalonitriles have been used as starting materials for symmetrically and unsymmetrically monosubstituted phthalocyanines and subphthalocyanines (McKeown, 1998), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitizers for photodynamic therapy (PDT; Leznoff \& Lever, 1996). The production of phthalocyanines for the use of dyes and pigments is around 80000 tons per year (Wöhrle, 2001). We report here the structure of the title compound, (I) (Fig. 1).

All the $\mathrm{C}-\mathrm{C}$ bond distances in the benzene rings have typical $\mathrm{Cs} p^{2}-\mathrm{Csp} p^{2}$ values. The average $\mathrm{C}-\mathrm{C}$ bond distances in rings C7-C12 and C14-C19 are 1.362 (5) and 1.402 (4) \AA. The $\mathrm{C} 4-\mathrm{O} 1$ and $\mathrm{C} 7-\mathrm{O} 1$ bond distances are 1.373 (4) and 1.405 (4) \AA, which are similar observed values in the literature (Gales et al., 2001; Tesouro Vallina \& Stoeckli-Evans, 2001; Karadayı et al., 2003). The $\mathrm{C} 20 \equiv \mathrm{~N} 1$ and $\mathrm{C} 21 \equiv \mathrm{~N} 2$ bond distances are 1.142 (5) and 1.154 (5) \AA, respectively. These values are within the expected ranges for phthalonitrile derivatives (Işik et al., 1999; Öztürk et al., 1999). The three benzene rings are each planar within experimental error, the largest deviation being 0.0119 (2) \AA for atom C5 of the C1-C6 ring. The dihedral angle between the rings $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$

Figure 1
The molecular structure of (I) and the crystallographic numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level.

Received 13 January 2004 Accepted 15 January 2004 Online 23 January 2004

Figure 2
The crystal structure of (I).
is $71.31(1)^{\circ}$, that between $\mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 14-\mathrm{C} 19$ is $62.91(1)^{\circ}$, and that between $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 14-\mathrm{C} 19$ is $37.66(1)^{\circ}$. The crystal structure of (I) is shown in Fig. 2.

Experimental

4-Benzyloxyphenol ($1.20 \mathrm{~g}, 6 \mathrm{mmol}$) and 4-nitrophtalonitrile (1.0 g , 5.78 mmol) were heated at 333 K in dry DMF (35 ml), with stirring, under N_{2}. Dry fine-powdered potassium carbonate $(0.96 \mathrm{~g}$, 6.96 mmol) was added portionwise over 2 h with stirring. The solution was stirred for 48 h at 333 K and poured into ice-water $(150 \mathrm{~g})$. The product was filtered off and washed with $(10 \% w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product. Crystals of (I) were obtained from ethanol at room temperature via slow evaporation (yield 60%; m.p. 383 K). Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 77.27, H 4.32, N 8.58%; found: C 77.50 , H 4.10 , N 8.50%. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3107-3037 (Ar-CH $)_{2}$, 2870-2940 (CH_{2}), $2229(\mathrm{CN}), 1603,1587,1502$, $1485,1412,1381,1306,1298,1238,1200,1084,1013,949,852,841,827$, 748, 696, 633.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=326.36$
Monoclinic, $P 2_{1} / c$
$a=20.149$ (3) A
$b=10.8606$ (8) \AA
$c=7.6424(10) \AA$
$\beta=81.892(11)^{\circ}$
$V=1655.7$ (4) \AA^{3}
$Z=4$
$D_{x}=1.309 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4810 reflections
$\theta=1.9-25.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.42 \times 0.31 \times 0.10 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: none 11417 measured reflections 3163 independent reflections 1505 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.179$
$S=0.99$
3163 reflections
227 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0862 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.019 (3)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 20$	$1.142(5)$	$\mathrm{O} 2-\mathrm{C} 13$	$1.432(4)$
$\mathrm{C} 20-\mathrm{C} 6$	$1.438(5)$	$\mathrm{O} 1-\mathrm{C} 4$	$1.373(4)$
$\mathrm{C} 21-\mathrm{N} 2$	$1.154(5)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.405(4)$
$\mathrm{C} 21-\mathrm{C} 1$	$1.427(5)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.492(4)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.366(4)$		
$\mathrm{N} 1-\mathrm{C} 20-\mathrm{C} 6$	$178.9(4)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$119.7(3)$
$\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 1$	$177.8(5)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{O} 1$	$121.7(3)$
$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 13$	$118.7(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 1$	$117.3(3)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 7$	$118.3(3)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$	$107.5(2)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$114.7(3)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$123.7(3)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11$	$125.6(3)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$115.6(3)$
$\mathrm{C} 19-\mathrm{C} 14-\mathrm{C} 13$	$121.5(3)$		
$\mathrm{C} 13-\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$-177.3(3)$	$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$	$178.1(3)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$95.4(4)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 2$	$61.5(4)$

The H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for $\mathrm{C} s p^{2}-\mathrm{H}$ bonds and $0.97 \AA$ for methylene $\mathrm{C}-\mathrm{H}$, and $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ (parent atom).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLUTON (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gales, L., Sousa, M. E., Pinto, M. M. M., Kijjao, A. \& Damas, A. M. (2001). Acta Cryst. C57, 1319-1323.
Işik, Ş., Öztürk, S., Fun, H. K., Ağar, E., Şaşmaz, S. (1999). Acta Cryst. C55, 1850-1852.
Karadayı, N., Akdemir, N., Ağar, E., Gümrükçüoğlu, I. E. \& Büyükgüngör, O. (2003). Acta Cryst. E59, o945-o946.

Leznoff, C. C. \& Lever, A. B. P. (1996). Phthalocyanines: Properties and Applications, Vol. 1-4. Weinheim: VCH.
McKeown, N. B.(1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Öztürk, S., Işık, Ş., Fun, H.-K., Kendi, E., Ağar, E., Şaşmaz, S. \& Ibrahim, A. R. (1999). Acta Cryst. C55, 395-397.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLUTON. Version of May 1997. University of Utrecht, The Netherlands.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (2001). Acta Cryst. C57, 489-490.
Wöhrle, D. (2001). Macromol. Rapid Commun. 22, 68-97.

